Section 2.3.3.4 – Code Quality Checking

The contractor shall conduct Software Code Quality Checking (SCQC) throughout the development and testing phases of the project. The government defines SCQC as a scan of the source code, executables, and related artifacts, e.g., documentation, to ensure that the system under development can continue with development, demonstration, and test; and can meet the stated performance, maintainability, and usability requirements within cost (program budget), schedule (program schedule), risk, and other system constraints.
SCQC encompasses the use of static code analysis, static security analysis, dynamic code analysis, dynamic security analysis and architecture analysis and is usually performed using automated tools. The government further defines the following terms:

· Static analysis is the analysis of computer software and related documentation that is performed without actually executing programs built from the software.

· Static security analysis is the analysis of computer software that is performed without actually executing programs to detect and report weaknesses that can lead to security vulnerabilities.

· Dynamic program analysis is the analysis of computer software and related documentation that is performed by executing programs built from that software on a real or virtual processor.

· Dynamic security analysis is the analysis of computer software that is performed by executing programs to detect and report weaknesses that can lead to security vulnerabilities.

· Architectural analysis may be supported by automated tools but are usually conducted by manual walk-through of documentation and visual inspection of the code.
The contractor whatever means it prefers for conducting SCQC as long as the results are equivalent to government analysis as described below. The government will identify to the contractor the tools and methods the Government intends to use to conduct independent SCQC. Changes to the government tool set, methods and criteria will be provided to the contractor with 90 days notice.
The contractor shall report SCQC results periodically (periodicity to be negotiated with the contractor after contract award) using DHIMS Defect Removal Efficiency Matrix mentioned in section 6.8.2.
The government will conduct its own independent SCQC inspection of the System under Development up to three times during the development of the system. This may consist of over-the-shoulder testing at the contractor’s facility or at the Government’s SCQC facility. The contractor will make available to the independent SCQC team the following artifacts in their current state at the time of request regardless of the method used:
· Source code and all design time libraries and licenses (static analysis)

· Executable code and libraries (dynamic analysis)

· Application configuration artifacts
· System Design Documents (SDD)

· System Sub-System Specification (SSS)

· System Sub -System Design Document (SSDD)

· System Security Authorization Agreement (SSAA)

· Interface Control Document (ICD)

· Database Design Document (DBDD)
· Test Cases (dynamic analysis)
· Other artifacts proposed by the contractor
The contractor will provide on-site assistance at the Government’s SCQC facility to support installation of the delivered software.
Section 6.8.2. Quality Assurance Surveillance Plan

	Analysis Criterion
	Description
	Acceptable Quality Levels
	Method of Surveillance

	Code Convention Violations
	Coding practices, such as naming conventions, use of brackets and braces, too many parameters in method signatures, and meaningful variable names
	Less than 10% of entire code base
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Error Handling Model Violations
	Consistent implementation of a well-defined error handling model
	Less than 5% of entire code base
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Architectural

Separation of Concerns
	Design practices such as a layered architecture in order to reduce coupling at the application and COTS/GOTS integration level.
	No violations
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Design Patterns
	Use of industry validated design strategies for well-known design scenarios.
	No violations
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Data Integrity and Data Architecture
	Use of input validation and database design and implementation practices such as: referential integrity, normalization, and appropriate use of indexes.
	No violations
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Security Model and Policies
	Consistent implementation of well-defined and tested security model including managed user information, authentication and authorization policies, and secure interaction with external processes.
	No violations
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Cyclomatic complexity
	A number greater than or equal to 0 indicating the number of independent paths that must be tested. A high value indicates that the code may be difficult to maintain since the logic may be unnecessarily complex.
	Less than 10
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Abstractness
	A number between 0.0 and 1.0 indicating that the component is either too generic or too specific. 1.0 implies that it will be difficult to add new functionality to the component. 0.0 means that the component is so generic as to be unusable.
	0.5
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Afferent coupling
	The number of components outside of a package that depend on a particular component with in a package. A high number indicates a high degree of dependency which implies changes to the component may require changes in the dependent packages.
	Less than 5
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Efferent coupling
	The extent to which a component in a given package depends on components in other packages. A high value indicates a high interdependency. Changes to components in other packages may require changes to the component.
	Less than 5
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Instability
	A number between 0.0 and 1.0 indicating the interdependency between packages. It is related to efferent and afferent coupling. 0.0 means the packages are completely independent, 1.0 means completely interdependent. Since isolation of functionality minimizes the impact of change between packages, a low value is preferable. However, a value of 0.0 is unlikely since there is likely to be some interdependency.
	Less than 0.4
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Lack of Cohesion
	An indicator as to whether a component has too many responsibilities and should be split into multiple components. Cohesion is to an indicator of the likelihood of reuse. There are multiple ways of calculating Lack of Cohesion. The better known approaches are called LCOM1, LCOM2, LCOM3, and LCOM4, respectively.
	One responsibility per component

	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Depth of inheritance
	In object-oriented programming languages, components can be created as “child” components of one or more “parent” components. As a consequence the child component can possess the characteristics of the parent(s) without creating additional code (inheritance). Child components can themselves be parents. As the depth of the inheritance increases, memory overhead, and processing overhead increases.
	<4
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Unused code
	The code present in an application that is never executed e.g. it is unreachable by any code path.
	0% of entire code base
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Percent Comments
	The amount of code that has comments. Comments are included in source code to provide details regarding the inner workings of a component.
	100% each code block
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Circular dependencies
	Component A may depend on Component B which in turn depends on Component A. This type of dependency can lead to infinite loops, problems initializing components, and run-time problems such as thread management.
	0% of entire code base
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Unit test coverage
	The extent to which individual components were tested while they were being developed. Unit tests check the logic and robustness of the methods within a component and should be largely independent of the existence of other components.
	80% of entire code base

(100% desired)
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Memory leaks
	A memory leak occurs when a program fails to release memory that it no longer needs. Because that memory is unavailable, the program must seek out additional memory to use, leading to an unnecessary increase in memory usage. This adding of memory can continue till all available memory is used, causing the system to become unresponsive or fail entirely.
	0% of entire code base
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Unused allocated memory
	Components can allocate and hold memory storage and use less than the amount allocated. This leads to unnecessary overhead and causes the application to use more memory than it requires.
	0% of entire code base
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Existing and potential Race Conditions
	Race conditions arise in software when different parts of an application that are running independently use some shared resource. This can cause application failure, or data loss.
	0% of entire code base
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Existing and potential Deadlocks
	Deadlock refers to a specific condition when two or more parts of an application are waiting for the other to release a resource i.e. Component A is waiting for Component B, but Component B is waiting for Component A. This can cause the application to never complete an operation as well as consume processor and memory resources.
	0% of entire code base
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Zombie threads or zombie child processes
	Parts of an application or child processes of an application may occupy a variety of states. A zombie thread or process is a part of an application or child process that may have completed execution but still controls system resources.
	0% of entire code base
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Long running methods/algorithm efficiency
	Algorithms or business logic that may consume an unusual amount of execution time or resources are indicative of poor or inefficient implementation.
	In accordance with Service Level Agreements (SLA) or other established performance measures
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Server Latency
	This is the time taken by the server to complete the execution of a request. This does not include the client-to-server latency, which includes additional time for the request and response to cross the network.
	In accordance with Service Level Agreements (SLA) or other established performance measures
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Client Latency
	The latency measured at the client includes the request queue, plus the time taken by the server to complete the execution of the request and the network latency.
	In accordance with Service Level Agreements (SLA) or other established performance measures
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Unmanaged connections
	During application execution, connection may be required to other systems. Connections that are not closed, in addition to locking operating system resources are potential security vulnerabilities.
	0
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Buffer Overflows
	An anomaly where a process stores data in a location outside the memory set aside for it. The data can overwrite data in adjacent locations potentially causing data loss or changing program flow. This can cause erratic or altered program behavior, incorrect results, program termination, or a breach of system security.
	0
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	CWE, OWASP, PCI or SAMATE vulnerabilities
	Potential security vulnerabilities are frequently changing. Static and dynamic security analysis identifies potential issues by checking the code against databases of known vulnerabilities.
	0
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Language Specific Rules and Guidelines
	Depending on the language used additional rules may apply addressing factors such as use of variables types and leveraging language specific control structures.
	To be negotiated after contract award
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

	Update and submit Defect Removal Efficiency Matrix each month
	Defect Removal Efficiency Matrix is setup with the Government to document and report defects during project development
	Reports are submitted at the requested time periods.

Accurately reflect underlying data
	Contractor Self-Reporting; Govt. analysis of submitted checklist; Random sampling between milestones

Throughout the development and testing process, it is expected that some violations may be waived in order for the project to continue as scheduled. A waiver request will be submitted and, if granted, will be incorporated into the monthly reports and test plans as directed by the COR.
Suggested Improvements to Test Planning: When approved, the contractor’s test program will be integrated by the government into an overall Integrated Test Plan (ITP).

DELIVERABLES (REVISED):

	Deliverable 39
	2.3.1
	Requirements Traceability Matrix (RTM)
	COR

CDRL

CM
	1

1

1
	11 business days before SSR
	Updated 10 business days after SSR;

Updated 10 business days after DR;

Updated 4 business days before DIT Inspection;

 Updated 4 days before TRR1;

Updated with TRR1 delivery;

Updated 2 days prior to TRR2

	Deliverable 47
	2.3.3.2
	Code Files and Libraries
	TMs

AM

CM
	1

1

1
	11 days prior to software delivery for first SCQC Government Event
	TRR1, TRR2, with each build/delivery/ release, or as requested

	Deliverable 48
	2.3.3.2
	Source Code
	TMs

AM

CM
	1

1

1
	11 days prior to software delivery for first SCQC Government Event
	TRR1, TRR2, with each build/delivery/ release, or as requested

	Deliverable 49
	2.3.3.2
	Executable Object Code
	TMs

AM

CM
	1

1

1
	11 days prior to software delivery for first SCQC Government Event
	TRR1, TRR2, with each build/delivery/ release, or as requested

	Deliverable 50
	2.3.3.2
	Code Documentation and Instructions
	COR

CDRL

CM
	1

1

1
	11 days prior to software delivery for first SCQC Government Event
	DIT Inspection, At software delivery and upon request

	Deliverable 51
	2.3.3.2
	Code Walkthrough Materials
	COR

CDRL

CM
	1

1

1
	11 days prior to software delivery for first SCQC Government Event
	DIT Inspection, At software delivery and upon request

	Deliverable 52
	2.3.4
	Test Procedures
	COR

CDRL

CM
	1

1

1
	Draft 14 days prior to the first DR
	Updated 4 days after PDR;

Updated 4 days after CDR;

Final updated 4 days after DIT Inspection

