
The Not-So Secret Secrets of Selling
AND

Achieving Success with
Software Security Assurance

John Keane

The Not-So Secret Secrets of Selling
AND

Achieving Success with
Software Security Assurance

John Keane
703-380-5554
jkeanejr@aol.com

Caveats

I am not speaking today as an official representative of the
Military Health System. The views expressed are strictly my
own but they do contain data and experience from my
current and past jobs in both government and private
industry.

I will be 64 in January. I wrote my first lines of code in 1964
and continued until 1968. By the time I returned to graduate
school in 1972, the amount of bad code being written created
the impetus to construct disciplines and structures to address
the problems. I saw the same patterns in the early 1980’s,
the early 1990’s and to a much greater extent in the last few
years. In may ways we are combating a problem that seems
to repeat itself every decade as lessons-learned, quality,
experience and value are traded in for low cost.

GEN Patton on War
(if he were around today)

“No bastard ever won a war
by making viewgraph slides
for his country.”

“He won it by making
the other poor dumb bastard
make slides for his country.”

“Everyone is looking for the Silver Bullet -
a methodology, a tool, a ‘killer’ application,

the latest technology - that will solve all
of their current problems.

They forget that there is only one
real Silver Bullet -- Continuous Hard Work”

Keane 1995

Some Early Thinking on the
Issues of Using Tools

More Recent Thinking

“A Fool With A Tool is Still a Fool”

• PMT256 - Program Management Tools Course
• TST203 - Intermediate Test and Evaluation

• Director, Federal Reserve Information Technology

To achieve success you need a combination of :

• Skilled People
• Disciplined Processes

• Enabling Tools and Technologies

What We Are Doing

Software Code Quality Checking (SCQC)
• A scan of the source code, executables, and related

artifacts, e.g., documentation, to ensure that the
System Under Review can continue with
development, demonstration, and test; and can
meet the stated performance, maintainability, and
usability requirements within cost (program budget),
schedule (program schedule), risk, and other system
constraints.

• Encompasses the use of static code analysis, static
security analysis, dynamic code analysis, dynamic
security analysis and architectural analysis and is
usually performed using automated tools.

Better Processes Better Products
Terminology

Static Analysis is the analysis of computer software and related
documentation that is performed without actually executing programs
built from the software.

Static Security Analysis is the analysis of computer software that is
performed without actually executing programs to detect and report
weaknesses that can lead to security vulnerabilities.

Dynamic Program Analysis is the analysis of computer software and
related documentation that is performed by executing programs built
from that software on a real or virtual processor.

Dynamic Security Analysis is the analysis of computer software that is
performed by executing programs to detect and report weaknesses that
can lead to security vulnerabilities.

Architectural Analyses may be supported by automated tools but are
usually conducted by manual walk-through of documentation and visual
inspection of the code.

Better Processes .. Better Products
More Terminology

• Software Assurance is the planned and systematic set of activities that ensures that software
processes and products conform to requirements, standards, and procedures to help achieve
• Trustworthiness - No exploitable vulnerabilities exist, either of malicious or unintentional

origin
• Predictable Execution - Justifiable confidence that software, when executed, functions as

intended
• (http://samate.nist.gov/Main_Page.html)

• Software Assurance is the level of confidence that software is free from vulnerabilities, either
intentionally designed into the software or accidentally inserted at anytime during its lifecycle and
that the software functions in the intended manner. (CNSS Instruction No. 4009, 26 April 2010)

• DOD Software Assurance is the level of confidence that software functions as intended and is free of
vulnerabilities, either intentionally or unintentionally designed or inserted as part of the software

• DHS Software Assurance is the level of confidence that software is free from vulnerabilities, either
intentionally designed into the software or accidentally inserted at anytime during its lifecycle, and
that the software functions in the intended manner to achieve
• Trustworthiness - No exploitable vulnerabilities exist, either of malicious or unintentional

origin
• Predictable Execution - Justifiable confidence that software, when executed, functions as

intended
• Conformance – Planned and systematic set of multi-disciplinary activities that ensure

software processes and products conform to requirements, standards and procedures.

Better Processes .. Better Products
Aligned with National Strategies

Better Processes .. Better Products
Why Do SCQC?

• Software Defects
• Too many, discovered too late in the system

development/ testing process
• Expensive to fix
• Delayed delivery of products to customers

• Improve Software Quality and Reduce Costs
• Early detection and correction of defects
• Achieve measurable return on investment

through
• Application of consistent standards by

vendors and testers
• Techniques
• Tools

• Key Features
• IV&V concepts developed by NASA in aftermath of

Space Shuttle Challenger disaster
• Independent relates to using a disinterested third

party
• Validation relates to "Are you building the right

thing?"
• Verification relates to "Are you building the thing

right?"
• Reinforce standardized, repeatable, and rigorous

empirical procedures to reduce developmental risk
• Provide ability to save and reuse multiple test cases and

data sets for regression testing

• Key Benefits
• Ensure that functional requirements continue to be met

as new products and services are introduced
• Improve product quality, decrease time to market, and

reduce lifecycle costs

GOAL: Implement Independent Verification & Validation best practices
to improve the quality of MHS IT products and services

Better Processes … Better Products
Independent Verification & Validation

• Developmental Test & Evaluation (DT&E): designed by
the Program Manager and normally executed by the
prime contractor with government testers to observe, and
by Government testers to verify requirements in the
delivered product, and, when appropriate, facilitate early
user involvement and contribution for the design and test
processes

• Operational Test & Evaluation (OT&E): conducted by
independent agencies to evaluate system operational
effectiveness, suitability, and survivability in support of the
full-deployment decision review

Better Processes … Better Products
Developmental Test & Evaluation and
Operational Test & Evaluation

Testing … necessary, but not sufficient
Focuses on: Validation relates to "Are you building the right thing?"

• Purpose: To ensure delivery of quality software code benchmarked
against recognized standards (e.g., IEEE, CMMI, etc.)
• Incorporates static, dynamic, static security, dynamic security

and architectural analyses
• Focuses on technical correctness of the code – except for

performance, may not be obvious to the end user
• Fact: Poorly written code results in customer dissatisfaction and

higher long-term maintenance cost
• Code Quality Checking supports MHS IM/IT Strategic Plan

• Operational Excellence (optimal time to market);
• IM/IT Effectiveness (high quality);
• IM/IT Efficiency (cost-effectiveness/reduced lifecycle costs).

Better Processes … Better Products
Verification: Software Code Quality
Checking (SCQC)

Software Code Quality Checking (SCQC)
Focuses on: Verification relates to "Are you building the thing right?“
Not conducted by Software Developer or PM: Independent

• Lack of documentation
• Complex code logic
• Legacy Technology

• Inefficient use of threads
• Complex database queries
• Ad Hoc database architecture

• Input data not validated
• Potential for malicious injection
• Possible hidden code

Maintainability

Security

Performance

Software Code Quality Checking
(SCQC) – Evaluation Framework

Recommendations
Refactor components to reduce dependencies and
coupling
Reduce thread usage

Use stronger key generation algorithms

Remove unused code

Validate user input

Add buffer size checks
Optimize queries – leverage more stored
procedures
Stop bypassing errors and use proper error-
handling

Software Code Quality Checking
(SCQC) Specific Corrections

TYPICAL APPROACH
Static Analysis Tools
CAST Application Intelligence Platform (CAST)
Analyze source code (Static Analysis)

Supports multiple languages
Checks against multiple code quality metrics
Checks database schema

FindBugs
Analyze source code (Static Analysis)

Supports Java
Removes CAST Tool Bias

Fortify (Fortify Source Code Analyzer)
Analyzes source code security vulnerabilities

Supports multiple languages
Checks against multiple security standards

Other Tools Used
Removing Any Biases

• Past Experience
• Purify Plus
• NDepend
• FxCop
• Visual basic Project Analyzer
• Ounce (IBM App Scan)
• Microsoft Team System Code Analysis

• Under Consideration
• Coverity
• NIST Samate Recommendations

Software Code Quality Checking
(SCQC) Common Issues

• Missing/defective Source Code
• Low code/comment ratio
• Dead Code
• Inconsistent logging
• Cross site scripting
• Unvalidated file-based operations
• SQL / Command injection
• Unvalidated input from an untrusted source
• LDAP Injection
• High Cyclomatic Complexity
• Weak Exception Handling
• Circular Dependencies
• Weak re-usability
• Failure to recognize Common Weakness Enumeration
(CWE) Software Weakness Types and apply recommended
mitigation techniques

Some Interesting Observations

• High Security Defect Density Is Closely Related to High False Positives
• Example 1

• 100,251 LOC
• 109,704 Security Violations (109.43%)
• 41,253 False Positives (99% Audit)
• 68,451 Residual Security Violations

• 6232.8 Hours to Remediate

• Example 2
• 67,395 LOC
• 2929 Security Violations (4.35%)
• 198 False Positives (6.76%)
• 2731 Residual Security Violations

• Example 3
• 117,000 LOC
• 31,314 Security Violations (26.77%)

• 16,083 Issues Audited (51%)
• 824 False Positives (5.13%)

• 2947.6 Hours to Remediate

Required Artifacts and Support
Asking for the Impossible?

• Documentation
• Application and Source Code
• Integration Requirements
• Knowledge Transfer
• Environment Hardware Setup and/or Access
• See Embedded Spreadsheet

• Designated HUMAN resources to address issues
• Developer
• SA
• QA/Tester

ANNUAL PROGRESS REPORT
STANDARD CONTRACTING LANGUAGE

• Key Features
• Provides clear and unambiguous

guidance to developers as to the
standards by which their products will
be measured/assessed.

• Transfers risk to the developer

• Key Benefits
• Promotes common understanding

with our developers as to the quality
of the code we ask them to deliver.

• Improves the likelihood of better code
delivered for testing and deployment.

• Reduces the high cost of fixing/re-
testing/re-fixing the code.

• Ongoing activities
• Developed Training Program for

Internal Staff
• Conducted Initial training

Developed standard contracting language that ensures software code quality
checking becomes “business as usual” for all our system acquisitions.

“Getting things right the first time is what software code quality checking is all about”
Greg Guernsey – Test and Independent Verification and Validation

Vendor and Staff Training

• DHIMS Quality Measures - Overview
• DHIMS Quality Indicators
• Defect Removal Efficiency (DRE) – Rayleigh Curve
• Defect Removal Efficiency (DRE) – Phase Containment Matrix

Quality Control Initiatives
• Root Cause of Defects
• Defect Removal Efficiency (DRE) – Improving DRE for Coding

Software Coding Quality Checking (SCQC)
• Defect Removal Efficiency (DRE) – Notional Impact of SCQC
• Process Changes from CDR to TRR – Three Changes

• Process Changes from CDR to TRR – Change 1: SCQC Drops
• Process Changes from CDR to TRR – Change 2: DIT Inspection
• Process Changes from CDR to TRR – Change 3: Smoke Test

• DHIMS Quality Assurance Surveillance Plan (QASP)

23

24

24

• Insufficient inspection (defect removal activities) in
• Design Phase
• Code and Unit Test Phase

Requirements
Analysis Design Code & Unit Test Build & Integration

Test

Test Planning Test Development Functional
Testing

SRR PDR CDR SIT TRR

Regression
Testing

Root Cause of Defects

D
E
V

T
E
S
T

25

• To support SCQC code drops to Government starts after CDR and before TRR1
• Government will conduct an inspection before the DIT testing phase at Vendor site
• Government will conduct Smoke Test prior to TRR1

Requirements
Analysis Design Code & Unit

Test
Build & Integration

Test

Test Planning Test Development Functional Testing

SRR PDR CDR DIT Inspection TRR1 (SIT)

Process changes from CDR to
TRR – Three changes

V
E
N
D
O
R

SCQC DROPS

SMOKE
TEST

1

2

3

26

• SCQC Drops
• Earlier the first formal code drop to DHIMS occurred after TRR. With SCQC IV&V

effort, the first code drop will occur between CDR and TRR. The drop will include
source code and libraries that will enable code compilation

• To conduct SCQC, the Government IV&V team will work with the Vendor to
determine and establish an environment for SCQC testing.

• The defects found during the SCQC testing will be logged in the Phase
Containment Matrix by the Vendor

• The Vendor will follow the agreed upon Remediation Management Plan to
address the issue or request a waiver for the same.

Process changes from CDR to TRR –
Change 1 - SCQC Drops

1

27

• DHIMS Inspection prior to DIT
• Ensure unit tests for code are written, reviewed, executed and issues addressed
• Ensure integration tests for code are written, reviewed, executed and issues

addressed
• Ensure regression/functional test cycles have acceptance criteria and these are

met prior to regression test execution
• Ensure regression/functional tests are written, reviewed, and ready for execution
• Ensure code goes through Govt. SCQC process and issues found during SCQC are

being addressed
• Validate that the functional users are satisfied with the system usability

Process changes from CDR to TRR –
Change 2 - DIT Inspection

2

28

• Smoke Test
• Contractor shall provide Smoke Test Plan
• Government will conduct Smoke Test prior to TRR1. The smoke test will include

the following:
• Software Installation
• Validation of Use Cases
• CRUD of data management
• Checks Interfaces
• Roles & Privileges
• Usability

• The Smoke test is the entry criteria into TRR. Successful completion of the Smoke
Test ensures that the application can proceed to TRR

Process changes from CDR to TRR –
Change 3 - Smoke Test

3

The Value Proposition

Defect Density
Conservative Model

Requirements
Analysis/Design

Code/Unit Testing Government Testing Production/
Deployment

Total Cost/
Investment

Return on
Investment

Error Distribution 10% 20% 55% 15%

Hours to Correct 50 120 380

Cost per Hour $100 $100 $100

Cost to Fix 1000 Errors $1,000,000 $6,600,000 $5,700,000 $13,300,000

SCQC Applied

Error Distribution 10% 40% 45% 5%

Hours to Correct 50 120 380

Cost per Hour $100 $100 $100

Cost to Fix 1000 Errors $2,013,518 $5,400,000 $1,800,000 $9,213,158

Cost Avoidance $1,013,518 $1,200,000 $3,900,000 $4,086,842

SCQC Investment $1,868,230

ROI 118.75%

*Stewart-Priven Group, 2009 Presentation to PMI-MHS “Software Inspection Success”

Return on Investment (ROI)
Conservative Cost Model*

Requirements
Analysis/Design

Code/Unit Testing Government Testing Production/ Deployment Total Cost/ Investment Return on Investment

Error Distribution 10% 20% 55% 15%

Hours to Correct 50 120 380

Cost per Hour $100 $100 $100

Cost to Fix 1000 Errors $1,000,000 $6,600,000 $5,700,000 $13,300,000

SCQC Applied

Error Distribution 10% 40% 45% 5%

Hours to Correct 50 120 380

Cost per Hour $100 $100 $100

Cost to Fix 1000 Errors $2,013,518 $5,400,000 $1,800,000 $9,213,158

Cost Avoidance $1,013,518 $1,200,000 $3,900,000 $4,086,842

SCQC Investment $1,868,230

ROI 118.75%

*Stewart-Priven Group, 2009 Presentation to PMI-MHS “Software Inspection Success”

Return on Investment (ROI)
Optimistic Cost Model*

Requirements
Analysis/Design

Code/Unit Testing Government Testing Production/ Deployment Total Cost/ Investment Return on Investment

Error Distribution 10% 20% 55% 15%

Hours to Correct 50 120 380

Cost per Hour $100 $100 $100

Cost to Fix 1000 Errors $1,000,000 $6,600,000 $5,700,000 $13,300,000

SCQC Applied

Error Distribution 10% 76% 11% 3%

Hours to Correct 50 120 380

Cost per Hour $100 $100 $100

Cost to Fix 1000 Errors $2,812,000 $976,800 $843,600 $4,632,400

Cost Avoidance $1,812,000 $5,632,200 $4,856,400 $8,667,600

SCQC Investment $1,868,230

ROI 363.95%

*Stewart-Priven Group, 2009 Presentation to PMI-MHS “Software Inspection Success”

What Happens When ROI Doesn’t Sell?

The
Graphical User Interface

(GUI)
Example

from 1994

Why a GUI?

Increased Productivity
When Compared to

Character-Based Environment!!!

30% Productivity Improvements -- Gartner Group

35-40% Improvements -- DMR Group

WHAT DOES THAT MEAN IN
THE REAL WORLD?

One Finance Clerk
Processing 100 Transactions per Day

Can Now Process
130 Instead

or
100 Clerks Processing 100 Transactions per Day

Can be Replaced by
77 Clerks Processing 130 Transaction per Day

100 x 100 = 10000 Transaction Per Day 77 x 130 = 10010 Transactions Per Day

WHAT’S WRONG WITH A GUI?

The True Cost of
Client-Server

MAIN-
FRAME

Estimated Yearly
Cost per User

1995-2000

Source: Fortune Magazine, April 17, 1995: Page 19

CLIENT-
SERVER

$3,248

$885

$1,467

$5,600
Total

$1,417

$1,379

$6,844Labor

Other
Technology
Expenses

Hardware and
Software

$9,640
Total

THE BUSINESS CASE FOR A GUI

Text-Based
Entry

Graphical
User

Interface
Net

Change

People

Salaries

Terminals

Total Cost

100 77 23

$7,000,000* $5,390,000* ($1,610,000)

$560,000

$7,560,000

$742,280

$6,132,280

+$182,280***

($1,427,720**)

* $70,000 Fully-Loaded Cost Per Civil Servant
** Does NOT Include Application Development Costs
*** All Increased Costs are Due to Increased IT Staff Costs

(OPTION #1 - Reduce Staff)

THE BUSINESS CASE FOR A GUI

Text-Based
Entry

Graphical
User

Interface
Net

Change

People

Salaries

Terminals

Total Cost

130 100 -30

$9,100,000* $7,000,000* ($2,100,000)

$728,000

$9,828,000

$964,000

$7,964,000

+$236,000

($1,864,000**)

* $70,000 Fully-Loaded Cost Per Civil Servant
** Does NOT Include Application Development Costs

(OPTION #2 - Same Staff Size but More Work)

I’m Ready For Any Questions

